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Abstract

The estimation of forest resources across small domains, such as the county level, is a problem well
addressed using small area estimation. Resource variables of interest, such as tree volume and basal
area, can only be measured with expensive in-situ ground plot observations. While collecting many
measurements on the ground is expensive, remote sensing layers, which include variables like temperature,
tree canopy cover, and enhanced vegetation index (EVI), are typically available for free from national
satellite systems. Current estimators used to assess mean resources by domain (analogously a resource
total) combine these two data streams include direct estimators like post-stratification (PS) which rely
only on measurements inside a domain and indirect estimators such as the area level empirical best
linear unbiased prediction (EBLUP) and and unit level EBLUP, which borrow strength across domains
to generate predictions. However, in a setting where a significant portion of the plot measurements are
zero applying current estimators results in model mis-specificity and poor confidence interval coverage
and is particularly relevant to studying a wildfire prone region, as wildfires typically generate a lot of
zeros. Using data from the US Forest Inventory and Analysis Program (FIA) from a large ecological
region in the Northern US Rocky Mountains as an example, we examine how using zero-inflation small
area estimators (ZI-SAE) could further improve upon current estimators. By tracking MSE, bias, and
variance in a series of simulation studies across 10 domains that had between 2.5% and 49% zeros,
we found the zero-inflation SAE model has lower empirical MSE than either the PS or unit or area-
EBLUP across all subsections and lower relative bias than most indirect estimators, particularly when
the proportion of zero-inflation is highest.

1 Introduction

1.1 Background

The United States Forestry Inventory and Analysis Program (FIA) monitors the nation’s forests by collecting
data on, and providing estimates for, a wide array of forest attributes. Not only is this work vitally impor-
tant, but it’s essential that it be done accurately and efficiently: “[The] FIA is responsible for reporting on
dozens, if not hundreds, of forest attributes relating to merchantable timber and other wood products, fuels
and potential fire hazard, condition of wildlife habitats, risk associated with fire, insects or disease, biomass,
carbon storage, forest health, and other general characteristics of forest ecosystems.” [1].



To assess forest metrics across the United States, the FIA employs a quasi-systematic sampling design to
collect data at ground plots across the U.S. The FIA employs stratified sampling approach to selecting
these ground plots, first partitioning the entire U.S. into 6000 acre hexagons and then randomly sampling
locations from within these hexagons for measurement the FIA catalogs “plot-level” data. In combination
with remote sensing data taken from satellite observation, the FIA uses these sparse ground plots to build
estimates of forest attributes . The remote sensing data typically includes climate metrics (e.g. tempera-
ture and precipitation), geomorphological measures (e.g. elevation and eastness), as well as metrics like tree
canopy cover which can be measured from a satellite. Two common forest attributes of interest include the
number of tree stems per acre and basal area, a measure of the total area per acre occupied by tree stems.
When the areas are spatially large, the current estimators that the FIA employs perform well, however,
there has been an increasing demand for accurate and reliable estimates of forest attributes in small areas,
defined as sub-populations, typically with few observations per area. The enormity of the nation’s forests
in combination with the resources required to collect plot-level data means that for small-area estimation,
typically only a few plot-level observations are available to build estimates. As mentioned above, collecting
data at the plot-level is both labor-intensive and expensive and thus prohibits additional data collection.
Instead, the FIA employs statistical methods alongside structure in the dataset to improve forest attribute
estimation, referred to as Small Area Estimation (SAE). Here, we study SAE techniques to improve forest
inventory estimates in the case where the data is zero-inflated.

Zero-inflated data shows up frequently in a myriad of places, from prairies, to forest fridges, to areas that
have been affected by wildfires. A plot level dataset is classified as zero-inflated when the response variable
follows a semi-continuous distribution, with a large number of zero observations. In the forest attribute
estimation setting, we further restrict our values to be non-negative. This data is challenging to model as
when the proportion of zeros is sufficiently large, normality assumption on outcome variables for regression
fail, motivating the use of other modeling techniques.
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Figure 1: An example of zero-inflated data in forestry. Here, the proportion of tree canopy cover follows a
non-negative continuous distribution, with a large number of zeroes.

For FIA applications, a lot of important forest attribute variables, such as basal area, exhibit a strong zero-
inflation structure, see Figure For example, when looking at the distribution of basal area we see very
clear zero-inflation.

This begs the question of why these key FIA forest attributes are distributed in this way, and the answer is
quite simple. Due to the high cost of going out and collecting ground plot data, the FIA will usually look at
the remote sensed data near a plot that they are supposed to go out to, and if they have good evidence that
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Figure 2: An example of zero-inflation in actual FIA data.
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there are no trees there (i.e if it is in a parking lot) they will simply mark all of the forest attributes on that
plot as zero. This is what leads to the unique data structure of zero-inflation that we observe in Figure [2]

1.2 Estimator Evaluation

A central process for this project will be to effectively compare the performance of various estimation meth-
ods. In particular we will want to assess how our estimation method performs relative to the methods that
the FIA currently employs. We will want to argue that our SAE estimation method is somehow “better”
than the current methods when our data is zero-inflated, and we need to introduce more technical language
in order to do so.

By far the most common metric used to asses a statistical model is the Mean Squared Error (MSE). When
working with an estimator fi for a parameter y, the MSE is calculated as

MSE(j) = E [(M - uﬂ (1)

In other words it represents the the average squared deviation from the true value of the parameter value.
Equation [I| can further be broken down to show that

a5 = Bl (i - B) | + (6] - 1)’ 2)

Thus minimizing the MSE boils down to simultaneously minimizing these two terms. The first is referred to
as the variance and the second the squared bias. It makes sense why we would want to minimize the bias as
we want our estimator to be close to the true value on average. Similarly it’s intuitive why we would want
our estimator to be less variable. Unfortunately, there is a tradeoff between bias and variance due to the
fact that they are inversely related.

Quite often an estimators are evaluated by how small their MSE is. This is indeed an important metric and
when we look at our results we will compare the MSEs of our estimators, but we will also compare the bias
and the variance of our estimators on their own to get a deeper sense for how they perform. Importantly,
the FIA is oftentimes most concerned with estimators that have the lowest bias, but not at any cost. We
will carry these ideas with us when we assess and compare our estimators.



1.3 Application Area

Before describing our exact application area, we’ll take a moment to describe the FIA’s data structure. In
previous sections we described the way that the FIA collects plot-level data as well as remote sensed data,
but so far we have not discussed a very important way that the data is structured.

The FIA breaks the United States down into smaller areas in a hierarchical manner. The areas in each level
are created with the goal of maintaining some level of ecological homogeneity within that area. Thus the
prefix "Eco” is prepended to the names of these areas to stress that they are ecologically defined. At the
smallest level are Eco-Subsections, which are nested inside of Eco-Sections, which are in turn nested inside
of Eco-Provinces. Each plot-level data point lies within a combination of these three levels of hierarchy and
it’s this data structure that allows us to define how some of our estimators utilize data from outside of a
given small area of interest.

Eco-Subsections C Eco-Sections C Eco-Provinces

For this particular project, we are using data from the Eco-Section M333A which is nested inside of the
Eco-Province M333, a region in the Northwestern United States containing portions of Montana, Idaho,
and Washington State. The larger province is characterized by forest-steppe, coniferous forest, and alpine
meadow. M333A and M333 as well as the other Eco-Sections nested in M333 can be seen in Figure 3] [3].
Eco-Section M333A contains 8 Eco-Subsections and 1, 204 total plot-level data points. The Eco-Subsections
within M333A are labeled by the letters a-i (excluding f, for reasons unknown to us). We were given the
plot-level data that the FIA had collected for the Eco-Section, as well as the remotely sensed variables ag-
gregated to the eco-subsection level. Due to the enormous size of the raw pixel-level remote sensed data files,
this aggregated form is the most common format in which these files are used.

This is important because some of our estimators required pixel-level, that is for each 30 x 30 meter plot in
M333A, data for our auxiliary variables which we were able to eventually aquire. The size of this data was
part of the reason that we only used M333A instead of the whole Eco-Province. Importantly, this meant
that we also needed pixel-level data for the forest attribute variables that we treated as our response.

M333A
M333 8
M1333C

M333D

Figure 3: Eco-Province M333 is located in the Northwestern United States and is classified by Eco-Sections
A-D (shaded), which can be further broken down into Eco-Subsections which are outlined.

One of the reasons that Eco-Section M333A was chosen, was because it is a well studied region which would
allow our findings to be compared more easily with the findings of other SAE estimation papers on FIA data.
But more importantly, the forest attributes of interest in M333A exhibit a nice range of zero-inflation across
the Eco-Subsections, which are the small areas that we will be estimating these attributes on. Although no
strict rules exist for what fraction of zeros is required for the data to be considered zero-inflated, we feel
comfortable that the M333A basal area variable can be considered zero-inflated, see This variation in
percent zero is extremely valuable as it will give us additional insight into how our estimator performs across
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Figure 4: The distribution of the plot-level Basal Area data across the Eco-Subsections of M333A. The facets
are labeled both by the Eco-Subsection name, but also by what percent of the Basal Area in that Subsection
is zero.

various levels of zero-inflation. Our argument in this paper is certainly not that our estimator should be used
in all cases. Rather, we want to develop an understanding for when our estimator will actually be useful,
and this data structure will help us do that. Figure [f] shows this phenomenon across the forest attribute of
Basal Area.

2 Methods

2.1 Notation

Let U denote a finite population with N elements, in our example U is M333A and N = 3,792,678 pixels.
We break U into J domains Uy, j = 1,2,---J, these denote eco-subsections M333Aa - M333Ai (d = 8 do-
mains). Each subsection U; is defined as having N; pixels, which range from Ny = 252, 506 to N5 = 931, 693.
The sample size, where we have observed basal area, of U is denoted n = 1204 for U, and indexed n; for
each eco-subsection. Each unit-level observation, ¢ in domain j has auxiliary information x;; that is col-
lected from satellites which include information like percent tree canopy cover (tccl6), enhanced vegetation
index (evi), alongside measures of temperature: mean, minimum and maximum. Observations like basal
area (BA) must be collected by hand and are therefore not observable at every pixel, we index these as
yij. FIA’s target is typically the domain means, u;, which is the average of the response variable across the
pizel population. In eco-province M333, there are a total of 23 domains, called subsections, which contain
between 28 and 384 plot-level observations. While the mean of a subsection with 384 observations can likely
be well-approximated using direct estimates like PS, a region with only 28 observations is considered a small



area and therefore would benefit from indirect estimators that borrow strength across subsections.

We denote our subsection level estimators as fi;, indexed j = 1,---,J and hope to build a model that has
both low bias, variance, and mean squared error (MSE). We write Var(fi;) and MSE(f;) for the variance
and MSE of our estimated parameters, respectively.

2.2 Current Suite of Estimators

The range of estimators we hope to compare to the zero-inflation model include PS, area-EBLUP, and unit-
EBLUP, which were identified as common estimators in communication with the FTA and appear frequently
in recent literature [1}, |4, [5]. Before fully introducing the estimators we will take a moment to describe the
various methodologies of small area estimation.

Recall that a common goal for the FTA is to produce estimates at the subsection level. In other words, we
are interested in generating estimates for small areas. For the purposes of this paper we will describe two
main "types” of SAE estimators: direct estimators which estimate (i; using only data within region j and
indirect estimators which use data across all subsections to estimate ji;. Broadly:

e Direct Estimators: only make use of sampled data from within the small area on which we are trying
to generate an estimate.

e Indirect Estimators: make use of sampled data from both inside and outside of the small area on
which we are trying to generate an estimate. These estimators incorporate data from outside the area
of interest using an explicit model. Within this type of SAE estimator there are two other nested
categories: unit-level and area-level:

— Unit-Level: Built on data at the unit level at which it was collected. In our case this means
building the estimator on the plot-level data

— Area-Level: Built on data that has been aggregated to the level of the small area on which we
are generating estimates. In our case this means building the estimator using subsection means
of pixel-level auxiliary variable observations.

Direct estimators have the advantage of being more easily interpreted and having low computational cost,
however indirect estimators, while more complicated, can often lead to a reduction in variance as a result of
making use of more of the available data and models if they are specified correctly. Based on communication
with the FTA, the Post-Stratified estimator is currently the most commonly used estimator.

2.2.1 Post-Stratified

The post-stratified (PS) estimator is a weighted average of the post-stratified means, or Horovitz-Thompson
(HT) estimators. The area of interest is divided, or stratified, by a single categorical auxiliary variable, in
our case the tree/no tree (tnt) boolean, and the sample mean is calculated for each region. Next, the weights
are generated by computing the fraction of the area which belongs to each strata which is used to weight our
HT estimates. Thus the PS estimator is a weighted mean of means. Formally, let our categorical auxiliary
variable have H levels indexed by h = 1,..., H. Next, let i = 1,...,n index the sampled units in a given
category h with sample size np. Now let NV and N; denote the total number of population units and the
total number of population units in category h of our auxiliary variable, respectively. Our PS estimator for
a given small area can thus be written as:

R H N, 1 np H N, B
(s = }; Wh {nh;yz} = }; Whyh (3)

Thus, we can see that the post-stratified estimator weights the strata-level means by the proportion of the
population units that category h occupies within that small area and then sums them all up. Recall that
since this is a direct estimator, this calculation is being done only using the data from within a singular small
area. PS is an unbiased and consistent estimator for the population mean ;.



2.2.2 Unit-Level EBLUP

Now let ¢ =1, ..., IN; denote the population units in small area j and let j =1, ...,J denote the small areas
in our population. Thus our explanatory variables (p = 1,..., P) for unit 7 in domain j are denoted by
Xij = (x}j, e xZ)T. We build a linear mixed model with random intercepts as follows

Yij = ij;ﬁ +u; + €45 (4)
T

Here x;; is a P x 1 vector of covariates, 3 is a 1 x P vector of fixed effects, u; is the random effect associated

with area j, and ¢;; is the individual level random effect for observation 7 in area j. We assume
uj ~ N(0,02) and &5 ~N(0,02)

In this case 02 is the between-area variance parameter and o2 is the within-area variance parameter. These
parameters are obtained using either method of moments or restricted maximum likelihood (REML); we use
REML. From this, B and 1, are estimated as laid out in Rao 2015 [6]. Of course, we are interested in getting
estimates for our small areas of interest so we must now aggregate to get estimates for an individual area j:

N,
O R .
T=Xiptis = 3 [xhB+ i) )
J =1

2.2.3 Area-Level EBLUP
Under the same indexing set up as in we build a linear mixed model with random intercepts as follows:
Y =x) B+uj+e¢; (6)

This time x;fF is a P x 1 vector of the means for all of our explanatory variables in area j, while €; is the

individual level random effect for area j. And again,
uj ~ N(0,02) and ej ~ N(0,0?)

the parameters 02 and o2 are again estimated using either method of moments or REML, and ,@ and 1; are
estimated as is laid our in Rao (2015) [6]. Note that since this is an area-level estimator, it is built on data
aggregated to the small area level. In the end we have the model

Y; =x] B+,

2.3 The Unit-Level Zero-Inflation Estimator

We now turn to a description and derivation of the zero-inflation model. Following [7], where y represents
the response and R represents the covariates and random effects, we have the following underlying model
structure:

EylR=r]=Ely | R=ry=0Ply=0|R=r)+Ely | R=r,y>0P(y>0|R=r) (7)
=0
=Ely|R=r,y>0P(y>0|R=r) (8)

Out of equation [7] comes a wonderful intuition for what our zero-inflation models will look like. By expanding
the LHS of equation [7] by conditioning on whether y is positive or not, we end up with an estimator in which
we fit a model to the nonzero portion of the data and then weigh those model outputs by the probability
that that point is zero. The allure of this structure is that the model for E[y | R = r,y > 0] is no longer
model-misspecified when fit only to the non-zero data points when compared to the unit-EBLUP. What’s
more, if the model for P(y > 0 | R = r) is accurate then data points that truly have zero response would get
sent to zero with a high probability by our estimator and non-zero data points would be accurately modeled



by a less biased model.

The model operates in a nested two-level form where the first level is the area and the second level is the
individual plot. The estimator is built for plot ¢ in area j:

Elyij | Rij =] = Elyi; | Rij = 7,95 > 0|P(yi; >0 | Rij =) (9)

We model the two parts of the RHS of |8 using two separate mixed models.

2.3.1 Linear Mixed Model (LMM)

We model Ely;; | Rij = r,y;; > 0] as the following linear mixed model with random intercepts fit to the
nonzero portion of the sample data. The subscript nz simply specifies that we are referring to the non-zero
portion of the sample data. We superscript our response with an asterisk (*) to denote the prediction is
from our linear model and is not our final estimate for y;;.

y;‘kj,nz = Xg;,nzﬁnz + Ujnz + €ijnz where Ujnz ~ N(Oa O—g,nz) » Eijnz ™ N(O’ O—g,nz) (10)

. T | P
In this case Xijnz = (l‘ij,m, s xijm,z)

2 is the between area variance parameter and o2, _ is the within area variance parameter.
:

u,nz

is a P x 1 vector of covariates and 3,,, is a 1 x P vector of fixed effects.
Furthermore o

2.3.2 Logistic Mixed Model (GLM)

We model P(y;; > 0 | R;; = r) as a logistic mixed model. The asterisk (*) on u} is to differentiate between

the random effect in our linear mixed model. This will become important when we combine the two models
in 2.3.3]
exp (xiTj'y + u}")

14 exp (xiTj'y + u;‘)

pij = where u; ~ N(0, o2.) (11)

where again, xz;- is a P x 1 vector of covariates, v is a 1 x P vector of fixed effects, and o2. is the value of

the between area variance parameter. Note that the lack of the subscript nz tells us that this model is built
on the entire sample data set.

2.3.3 Combining the Models
We then combine these two estimators to create the final model estimate
exp (x;f’;fy + uj)

1+ exp (xz;’y + u;‘)

Yij = YiiPij = [X0jneBnz + Ujnz + Eijnz] - (12)

For simplicity we assume that the random effects between the two parts of the model are uncorrelated, i.e
Corr(ujynz,u’;) =0 Viel,..J

While this is very likely not a correct assumption, [7] showed that taking the correlations into account only
slightly improved the accuracy of their estimates while introducing much more complexity to the model
itself. For this reason we choose a simpler model at the expense of slightly more accuracy.

We employ a frequentist approach by which we estimate models (2) and (3) to get the estimates ,53”2, Y, Ujnz, and 5.
Following the structure of the R package lmer these parameters are estimated using restricted maximum
likelihood (REML).



With these we generate g;; and p;;:

o~k T e ~

yij = Xij,nz/anz + Ujnz
exp (x;fgfy + ﬁ;“)

1+ exp (xiTj’? + a;)

f)ij =

While the two part model is fit on the plot-level sample dataset, it is applied to the pizel-level data set. An
estimate for our final model, at the individual plot level is taken to be §;; = §;;p;;. Then, since we are
interested in area level estimates, we aggregate to the area level:

N.
N 1 = ..
Yi=+ > by (13)
J =1

where N; is the population size of area j. Notice that since we are summing over the total number of
pixel-level data points in area j, we must predict both of our models in our two part estimator on the entire
pixel-level data set.

2.4 More intuition for the Zero-Inflation Estimator

For these examples and images we will use downsampled data from all across Eco-Province M333. Suppose
we are building a model where we are trying to predict Basal Area using one of our remote sensed auxiliary
variables: Tree Canopy Cover. If we plot these variables against each other we see the following pattern:
While there is certainly a moderately strong positive linear relationship for a portion of the data, we do see
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Figure 5: The relationship between our key FIA forest attribute of interest, Basal Area, and Tree Canopy
Cover, a predictor known in forestry to have strong correlation.

a large portion of data points that lie directly on the x-axis due to the large proportion of zero-inflation in
Basal Area. We’ll now walk through how some of the estimators described in the previous section fare with
this unique data structure.



2.4.1 Unit-Level EBLUP
While this is an oversimplification of what the unit-level EBLUP actually does, it does highlight the imprac-

ticality of using a unit-level that relies solely on an underlying linear model.

K

Basal Area

Ground Plots

Tree Canopy Cover

Figure 6: On the left we show an image of M333 with each dot representing an example of a ground-plot.
On the right we show those ground plots plotted in the same way as in Figure 5, but with a OLS model fit

to the data.
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The underlying linear model of a unit-level EBLUP is clearly model misspecified in Figure 6. What’s more,
as Basal Area becomes more and more zero-inflated we can imagine the linear model becoming less and less
appropriate for the data. One major way to get around this model misspecification is to use an area-level
model.

2.4.2 Area-Level EBLUP

Again, the area-level EBLUP is more complex than simply fitting a linear model to the area level data, but
this example helps give intuition for why the area-level EBLUP might be used in zero-inflation situations.
When the data are aggregated to the area-level and we plot mean basal area against mean tree canopy
cover we get a better model fit: While an area-level estimator with an underlying linear model does fix the

Mean Basal Area
o
(=3

'\_,/ Subsection - Level
30 40 50 80

Meaw Mean Tree Canopy Cover

Figure 7: On the left we show an image of M333 with each dot representing an area level mean. On the
right we show those means plotted, with an OLS model fit to the data.

model-misspecification problem, we are making use of so much less data in this approach. It’s this loss of
data that often makes area-level estimators unmanageably variable.

2.4.3 Unit-Level Zero-Inflation Estimator

Finally, we’ll show visually how the zero-inflation estimator tackles modeling this data structure. As a
reminder, a linear model is fit to the non-zero portion of the sample data. Next a logistic regression model is
fit to the full sample data. We get our final predictions for a given plot in a given small area by multiplying
the output of the linear model by the output of the logistic regression model. By only fitting a linear model
to the non-zero portion of the data we end up with a model that is more specified to the data structure.
We can gain intuition for the combination of the two models by imagining that we are weighting our linear
regression outputs by how likely our logistic regression model thinks that that plot has zero basal area.

2.5 Bootstrapping MSE

In order to generate mean squared error estimates we follow the bootstrapping technique laid out in Chan-
dra and Sud (2012) to estimate the MSE for the zero-inflated SAE estimator [§]. We run the following
bootstrapping technique on the full suite of sample data sets:

1. Fit the zero-inflation model to the original data set and extract the parameters from the two part
model. This provides estimates of the true population parameters:

(a) B, the fixed effects from the linear mixed model.

(b) 62, the variance of the area-specific random errors, and 62, the variance of the individual-level
random errors.

11
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Figure 8: On the left we show a linear model fit to the non-zero portion of the sample data. On the right
we show a logistic regression model fit to the full sample data set.

(¢) 4, the fixed effects from the logistic mixed model.
(d) 4}, the random effects for each eco-section in the logistic model.

Using these parameters, we generate the population bootstrap data set by first computing the proba-
bility that each point is non-zero using,

5 exp(miy +aj)
P = (14)

1+ exp(xi59)
then, treating these as bernoulli trials, we generate indicator random variables 5;’} which will generate
zeros in the bootstrap data. Now, we generate area-specific random errors for each domain U; for

j =1,2,--- ,d and individual random errors for each pixel in U. Intuitively, these are fit from a
normal distribution as we assumed they were drawn from one. Thus our random errors become:
ui ~ N(0,673) ei; ~ N(0,67) (15)

We generate our bootstrap y;; data from the pixel-level x;; data, as follows:
uh = (megB+ul +€5) 0 j=1,2,---,d, i=1,2.--N, (16)

Now that we have generated y;; for each pixel in the dataset we can now compute the population
parameter of interest. For our study the population parameter of interest, 8 the domain mean for each
subsection which we can now compute via the sample mean:

o1 0 - 8 )
1 o

Qj:nyfjforj:L“'ad (18)
Nji:l

6 becomes our true population parameter, even though it has been generated artificially. We now can
calculate bias and empirical MSE using this as our true value.

2. Generate B bootstrap samples from the bootstrap population data set of equal size to the original

sample and fit the zero-inflation model to the each one, extracting the model estimates for each one
A (b)
6 .

)

L (b
3. Compute an estimate for the MSE by taking & 25:1(0( —0)%

12



2.6 R Function Code

The first working version of an R function that will fit this a zero-inflation model to a given dataset has
been written. It uses 1lme4:1mer () and lme4: :glmer () to fit the linear mixed model and the logistic mixed
model respectively. Both of these R functions default to using restricted maximum likelihood to find the
parameter estimates, and we used this default throughout this project. Additionally if the user wants MSE
estimates the function will perform the bootstrap MSE estimation procedure as described in Section [2.5

In order to evaluate this zero-inflation model we want to be able to meaningfully compare it to the other
SAE models that the FIA employs. We do this through the use of a simulation study using our function
code and all of the estimators described in the methods.

2.7 Simulation Study

To effectively compare the performance of the zero-inflation estimator relative to the estimators that the
FIA most commonly uses, we designed a simulation study to compare the Post-Stratified Estimator, the
Unit-Level EBLUP, the Area-Level EBULP, and the Zero-Inflation Estimator. Following the work of Morris,
White, and Crowther (2019) we designed our simulation study as follows [9].

2.7.1 Aims

e To understand under what conditions the zero-inflation estimator outperforms other estimators cur-
rently in use by the FIA for small area estimation.

e Assess the performance, as measured by empirical percent relative bias and empirical mean squared
error, of zero-inflation small area estimation models (ZI SAE) in comparison to the unit-level EBLUP,
area-level EBLUP, and Post-Stratified estimators.

e Generate heuristics for when the FIA should be concerned about model mis-specificity caused by
zero-inflated data, when performing small area estimation.

2.7.2 Data Generating Mechanisms

Pixel-Level Data Generation

We chose to use basal area as our response variable because it had sufficient and variable levels of zero-
inflation. However, as basal area is collected at the plot-level, pixel-level data for them simply does not
exist. As pixel-level observations are required to assess estimator bias in the simulation study, we used a K-
Nearest Neighbors (KNN) imputation process to generate our full pixel level data. We chose a non-parametric
model to do the imputation as assuming additional underlying structure would be likely to advantage certain
models. For example, if we used linear regression on another auxiliary variable to impute basal area, we
would favor models that also carried linear assumptions, including area and unit EBLUP. As we decided
to use Basal Area as the forest attribute of interest for all of our analyses and so we only imputed this variable.

Using the R function knn() from the package class we trained our knn model setting k¥ = 2 on the plot-
level data set using the following predictors: Enhanced Vegetation Index (evi), Tree Canopy Cover (tcc),
and Mean Temperature (tmean) where the classification for each point was the value of Basal Area. This
model was then applied to the pixel-level data set that we had already been given to give us pixel-level data
for Basal Area. This unconventional use of a KNN model resulted in imputed data that was quite lumped
together because we used 1,204 data points to generate data for over 3.7 million pixels. To fix this issue, we
added random noise to the Basal Area value associated with each pixel from a uniform distribution over the
interval (—3,3) to only pixels that were non-zero.

Sample Data Generation

In order to compare our estimators across a large number of trials we had to come up with a process for
generating a large number of sample data sets on which we would test the models.
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We followed a semi-systematic random sampling design that mimicks how the FIA samples ground plots.
Recall that the FIA overlays a hexagonal grid over the U.S. and then randomly samples locations from
within those hexagons to determine where actual field measurements will be taken. Thus every plot-level
data point is associated with a unique hexagon. Because of this, our each of our imputed pixel-level data
points are associated with a unique hexagon as well. The sampling design was thus as follows:

1. Sample k different hexagons from the total number of unique hexagons.

2. Sample 1 pixel from each of the k chosen hexagons,— this results in k& total data points that we will
treat as a plot-level data point for that simulation run.

3. Rinse and repeat.

We ran through this process 2000 times for each value of k that we used. This resulted in 2000 different
sample “plot-level” data sets for each run the simulation. As the hexagons can contains portions of multiple
eco-subsections this process does not results in exactly k/8 (there are 8 eco-subsections in M333A), sampled
plots per eco-subsections but it was generally close, especially for larger values of k.

2.7.3 Dials

To get a more robust sense of when the zero-inflation estimator outperforms the area EBLUP, unit EBLUP,
and PS estimator, we tune the total number of samples used to fit the model.

e Sample Size (30, 50, 100): The main dial that we wanted to turn was the sample size of each eco-
subsections. As mentioned previously the FIA is especially interested in developing estimators that
can perform well on very small sample sizes and so we wanted to compare the performance of our
zero-inflation estimator relative to the other estimators across different approximate sample sizes.

— We used k& = 240,400, and 800 in order to get subsections with sample sizes that were approxi-
mately 30,50, and 100 respectively.

— This resulted in 3 different simulation datasets of 2000 samples where the difference between the
3 sets was the approximate sample size in each subsection.
2.7.4 Estimands

° uf”A: The mean of our response variable (Basal Area) in eco-subsection j for a given estimator.

2.7.5 Performance Metrics

We use the following metrics to evaluate our models over the S = 2000 samples for each ecosubsection,
7 =1,---,d, and for each of the 3 simulation runs, k£ = 30, 50, 100:

Ak;_ w R (s
e Empirical Percent Relative Bias: [“JH“] -100, where ué? = (S‘l Eses,u; ))

e Empirical Variance: Vér(ugBA)k) =< [Zses(l;kf) - uj])Q]

e Empirical Mean Squared Error: MSE(,&;BA)]C) = Vér(;i’“j) + [p;kj

12
2.7.6 Computation

As the zero-inflation model required that our estimators be predicted on the entire pixel-level data set, we
utilized the Harvard Cluster to help with the huge amount of computation. Due to time constraints we were
unable to run the MSE estimation procedure as described in [§].
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3 Results

3.1 Simulation Data Generation
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Figure 9: Distribution of zero-inflation of the generated simulation study samples for each Eco-Subsection
ordered by zero proportions.

We begin by showing the distribution of zero-inflated in eco-subsection. For each sample that we generated
for our simulation study, we computed the proportion of Basal Area that was zero for each subsection and
plotted in Figure 0] Understanding how the proportion of zero inflation relates to estimator performance is
essential for our simulation study aim of determining when to recommend the zero-inflated model. The main
results plots will be ordered from least zero-inflated to most zero-inflated which was determined by looking
at the means of the distributions in Figure [0}

3.2 Evaluating Model Bias

Figure [L0] shows the Empirical Percent Relative Bias across all 3 simulation studies and 8 eco-subsections
for each model. Across the 24 simulation size and eco-subsection model comparisons we found that the PS
estimator performed best, having the lowest bias 15 times, the zero-inflation model had the lowest bias 8
times, the area-EBLUP once, and the unit-EBLUP never performed the best. We expected the PS estimator
to perform particularly well because it is asymptotically unbiased and our sample sizes were relatively large.
Comfortingly, we see that amongst the other models, the zero-inflation model is a clear second, outperforming
both the area and unit EBLUP models. While the PS estimator had the least bias the most times, when
computing the average bias across all 24 trials we found that the PS and zero-inflation models tie at an
average absolute bias of 1.82%, see Table This indicates the PS estimator often has significant bias, see
Figure making the zero-inflation model seem like a safer choice for the FIA. For example, in subsection
M333Ah, the unit zero-inflation model has roughly half the bias of the PS estimator, which is nearly 10%
off on average across the 2000 trials.
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Model H Lowest Abs. Bias Count | Avg. Abs. Bias | Lowest MSE Count | Avg. MSE

Area EBLUP 1 5.32 % 0 66.1
PS 15 1.82 % 0 101.0
Unit EBLUP 0 4.09 % 0 25.8
ZI-SAE 8 1.82 % 24 214
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Figure 10: Bias results for the Simulation Study across 3 sample sizes, and 4 estimators: Post-Stratified,
Area-EBLUP, Unit-EBLUP, and Zero-Inflated Model. Each facet represents a different eco-subsection in
M333A, with the x-axis of each facet differentiating between the sample sizes. We plot the absolute value of
the biases. Plots are ordered left to right top to bottom with increasing zero-inflation as shown in Figure El

3.2.1 Estimating Model affect on Bias by Percent Zero-Inflation

To provide an estimate for when the FIA should consider the zero-inflation model as a function of bias,
a natural starting point would be to study how the winning model changes as a function of the percent
zero-inflation. Combining the average percent zero-inflation results from Figure [J] for each subsection with
the absolute percent relative bias estimates from the simulation, we display the bias as a function of percent
zeros in the data stratified by model type, see Figure We summarize the regression results in Table
Based on bias alone we recommend that the FIA should consider using zero-inflation model when the
proportion of zero inflation exceeds 25%, as this is the threshold above which the zero inflation model has

the lowest bias.

’ Model H Intercept ‘ Slope ‘
Area EBLUP -1.93 32.77
Post-Stratified -1.41 13.04
Unit EBLUP 2.99 5.53

Z1-SAE 0.955 3.86
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Figure 11: Average Absolute Bias as a function of subsection percent zero-inflation. We stratify by model
and fit a regression to the corresponding points, shaded in the same color. Changing the sample size to 50
or 100 observations per subsection had little effect on regression coefficients and did not affect conclusions.

3.3 Empirical MSE Results

Figure [12] shows the empirical MSE results across all 3 simulation studies and 8 eco-subsections for each
model. Again comparing across the 24 simulation and eco-subsection comparisons, we find that the zero-
inflation model has the lowest MSE across all comparisons and has the lowest average empirical MSE, see
Table When looking solely at the bias results in Figure we could conclude that the PS estimator
could be a strong candidate, however, we find that the MSE is on average 101 compared to the zero-inflation
model with 21.4. The empirical MSE results indicate a strong preference for unit zero-inflation models at
this level of zero-inflation in the data.

4 Discussion

In this study we found that the zero-inflation model has potential to improve forestry estimates by sig-
nificantly reducing the empirical MSE without increasing model bias. The analysis of empirical bias as a
function of percent zero inflation revealed that at 25 % zero-inflation and above, the zero-inflation model
had less bias than the unit and area EBLUP. While subsection Ai demonstrated that the PS estimator
could still have low bias at high levels of zero-inflation, however the corresponding large empirical MSE
values are prohibitive. We conclude that the FIA should consider employing the zero-inflation model over
post-stratification when the percent of zeros in the data exceeds this 25% threshold. However, this threshold
should be lowered when we begin to factor in empirical MSE results as the PS estimator has a standard
error over 2 times larger than the zero-inflation model, which could revise our estimate to data having 10%
zeros, per the intersection of the area-EBLUP and unit ZI models. Considering more models, additional
eco-Provinces and subsections, and simulations will help tune this threshold.

Previous literature and R-package development has focused on encouraging FIA to move away from using
only the PS estimator by demonstrating the robustness of area and unit EBLUP models among others [1]
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Figure 12: Empirical MSE Results for the Simulation Study across 3 sample sizes, and 4 estimators: Post-
Stratified, Area-EBLUP, Unit-EBLUP, and Zero-Inflation Estimator. Each facet shows the results for one of
the 8 eco-subsections in M333A. Along the x-axis we have the three approximate sample sizes for the three
different simulation run.

. In this study, we showed that there was a significant improvement to using the ZI model over these
other 3 models in a region where there was a significant amount of zeros present in the data. Our findings
exemplify how sophisticated problem-specific models can yield significant performance improvements. While
our study was limited in scope to M333A and relied on imputed data for the simulation, the limited tuning
we performed suggests that the strength of the zero-inflation model likely persists across a much wider range
of scenarios. Furthermore, while the regression was performed on limited data, these results were consistent
across sample sizes and are consistent with our theoretical understanding of the models. We hope that
future work will verify these findings, particularly across different levels of zero inflation and US regions.
We also hope to continue to add expressivitity in our models, perhaps random forests, to fit the complex
relationships between forest growth and predictors. Adding a spatial correlation component that can capture
regional variability could further improve these estimates would also be a valuable next step. While model
performance is important, models must be straightforward to implement, tune, and understand in order to
be adopted by the broader community.

Ultimately, the ZI model outperformed the PS, area EBLUP, and unit EBLUP models in our simulation
study. Using models which improve empirical bias and MSE in forestry applications can have wide ranging
implications for land management and forestry operations, and are especially important at a time when the
signal-to-noise ratio of climate change impacts are particularly small . Narrower confidence intervals may
allow the FIA to disentangle the climate change signal from background variability, promoting early action
which will better preserve US forests for generations to come.
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