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Key Points:9

• Driven largely by the last two decades, western U.S. severe snow droughts have10

increased in frequency by 40-50% across all major watersheds over the last 60 years.11

• The SPEAR climate model accurately simulates the rapid acceleration of west-12

ern U.S. severe snow drought occurrence that began in the early 2000s.13

• SPEAR projects that increasing temperatures will cause the West to transition14

to a no-snow environment by the end of the 21st century.15
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Abstract16

Seasonal snowpack in the Western United States (WUS) is crucial for meeting summer17

hydrological demands, reducing the intensity and frequency of wildfires, and support-18

ing snow-tourism economies. While the frequency and severity of snow drought is ex-19

pected to increase under continued global warming, quantifying both the response of snow20

drought to radiative forcing and uncertainties from to internal climate variability pro-21

vides a significant challenge. To evaluate projected changes in WUS snow droughts and22

their uncertainty, we analyzed a 30-member large ensemble global climate model with23

moderately high atmospheric resolution (∼50km), the Seamless System for Prediction24

and EArth System Research (SPEAR). To monitor changes in WUS snow droughts in25

both an observational dataset and SPEAR, we developed a non-parametric drought clas-26

sification scheme for monthly snowpack. We find that SPEAR predicts dramatic increases27

in snow droughts, with a 8.8-fold increase under the SSP5-8.5 emissions pathway and28

a 5.2-fold increase under SSP2-4.5 by 2100. These changes are primarily driven by an29

increase in monthly temperature anomalies and not a decrease in precipitation. To as-30

sess summer water availability we define a condition called ”no-snow” which measures31

when a location has on average less than 10% of it’s historical April snowpack for the32

previous 10-year period. After aggregating to the regional level, we found large variabil-33

ity in onset times of no-snow conditions, attributable to internal climate variability. Across34

the SSP5-8.5 30-member ensemble spread, SPEAR projects that California, for exam-35

ple, could experience no-snow conditions across 90% of the historically snowy region as36

early as 2058 or as late as 2096. Such a wide range emphasizes large irreducible uncer-37

tainty from internal atmospheric variability on WUS snow drought. This uncertainty has38

large implications for the regions water management and habitability over the coming39

century.40

Plain Language Summary41

When winter snow on the ground is significantly less than normal, a region is said42

to experience a snow drought. Recently, the Western United States has seen a sharp uptick43

in the frequency of severe snow droughts. As the region depends on stored mountain snow-44

pack, snow droughts have amplified water shortages and wildfires. Here, we use a new45

climate model to examine snow drought projections through 2100. We find that under46

a high emission scenario, they could become 9 times more frequent by 2100. Using a large47

ensemble model, we also examine how internal climate variability impacts how soon re-48

gions reach a state of “no-snow” in April. California, for example, reaches no-snow con-49

ditions anywhere from 2058 to 2096 under the high emissions scenario. This variability50

has implications for Western water management and habitability over the coming cen-51

tury.52

1 Introduction53

Mountains in the Western United States (WUS) have been coined the “water tow-54

ers” of the West, storing winter precipitation as snow and releasing it during the dry spring55

and summer as meltwater to populations which have increasingly high water needs (Barnett56

et al., 2005). Alongside direct benefits of sustained snowpack to human water needs, sev-57

eral indirect benefits such as reduced forest fires (Trujillo et al., 2012; Gergel et al., 2017)58

and improved snow tourism economics, makes snowpack essential to the WUS’ environ-59

ment and its people. Low or variable snowpack means the opposite: decreased water se-60

curity, increased fire season activity, and unpredictable snow conditions for tourism (Wobus61

et al., 2017). Despite large variability from season to season, climate change is already62

having a measurably significant impact on WUS snowpack, moving towards decreasing63

snowpack, particularly in late winter (Barnett et al., 2005; Huning & AghaKouchak, 2020).64

When snowpack, or snow-water equivalent (SWE - the depth of water if all snow melted65
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instantaneously), levels fall significantly below normal, the region is said to experience66

a snow drought. Snow drought affects the WUS’ economy and human activities, includ-67

ing areas far from mountain snowpack which rely on spring and summer meltwaters for68

crop production and human consumption.69

While hydrological drought has immediate impacts on water resources and avail-70

ability, the impact of snow droughts (SDs) is typically not felt until summer when early71

or low snowmelt can exacerbate meteorological drought. Mountains play a key role in72

WUS water supply, as their lower temperatures and higher precipitation capture signif-73

icant water reserves in the form of snowpack. Dry WUS summers make the region re-74

liant on a steady supply of melting water throughout much of the spring and summer.75

Winters with low snowpack typically exacerbating water shortages and increasing wild-76

fire frequency and intensity (Barnett et al., 2005; Trujillo et al., 2012; Gergel et al., 2017).77

Snow droughts come in two types: dry and warm, which have different hydrologic effects.78

Dry snow droughts occur when low precipitation, but normal or cold temperatures, re-79

sults in low stream flow during the melt season. Warm snow droughts are characterized80

by normal precipitation but high temperatures and usually have rapid early season snowmelt81

resulting in increased reservoir flood risk in early spring, followed by drought conditions82

as mountain SWE is quickly depleted (Harpold et al., 2017). Shrestha et al. (2021) have83

shown that there is a critical threshold of -6 to -5°C for average winter temperatures above84

which additional warming begins to significantly decrease snowpack. All 5 WUS water-85

sheds fall into this category, and so we expect its snowpack is vulnerable to any level of86

warming (Shrestha et al., 2021).87

Previous literature has shown that large observational uncertainty in climatolog-88

ical SWE remains across the WUS. Observational uncertainty is particularly high in re-89

gions with complex terrain and low sampling rates, such as mountains, as temperature90

and precipitation uncertainties are magnified in snowfall estimates. Coupled global cli-91

mate models (GCMs) face similar challenges but to a greater degree because they must92

also simulate temperature and precipitation, and are without access to the high-resolution93

of a variable infiltration capacity (VIC) model, which is needed to accurately resolve snow-94

pack over complex mountain terrain (McCrary et al., 2017; Kim et al., 2021; Wrzesien95

et al., 2019; McCrary et al., 2022). Despite large biases and variability in simulating cli-96

matological SWE, these models exhibit more uniformity in simulating robust decreases97

in WUS SWE (Matiu & Hanzer, 2022). Recently Huning and AghaKouchak (2020) have98

shown that SD total duration, average duration, and intensity in the WUS has increased99

by 28% between 1980 and 2018, while Shrestha et al. (2021) finds that conditions are100

expected to continue to worsen because of the WUS’ low latitude. As a result, we will101

primarily focus on comparing changes in SWE across data sets.102

To investigate historical and future changes in SD frequency and intensity we use103

a 30-member initial condition state-of-the-art coupled large ensemble global climate model,104

called the Seamless System for Prediction and EArth System Research Large Ensem-105

ble (hereafter SPEAR). We first show SPEAR accurately simulates changes in WUS se-106

vere snow drought (D2+ SD) by comparing to an observational dataset and with pre-107

vious studies across the historical period (1921-2011) (Livneh et al., 2013; Huning & AghaK-108

ouchak, 2020). Here, the D2+ SD classification includes all snow droughts in the severe,109

extreme, and exceptional (D2, D3, and D4) drought categories as described by the US110

Drought Monitor (Svoboda et al., 2002). We then explore the magnitude of the projected111

changes by assessing the proportion of months that experience D2+ SD, looking both112

at the ensemble mean across the WUS through time alongside the ensemble member path-113

ways. To determine what is driving the rapid acceleration in D2+ SD frequency, we de-114

compose drought conditions by their temperature and precipitation anomaly what con-115

ditions are driving these changes. We then provide a watershed-level assessment of the116

probability of a “no-snow” environment by the end of the century that explicitly accounts117

for both scenario uncertainty and internal climate variability.118
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By separating the uncertainty into the portion attributable to internal climate vari-119

ability and emissions uncertainty we can determine the distribution of D2+ SD changes120

over the next 80 years, variability in the conditions which generate drought/non-drought121

conditions, and the probability distribution of the transition timing to a no-snow regime.122

To verify that SPEAR accurately reconstructs changes, we first look over the historical123

period (1921-2014), which includes observed time-varying natural and anthropogenic ra-124

diative forcing, and then consider future projections (2014-2100) under a middle-of-the-125

road (Shared Socioeconomic Pathway 2-4.5, hereafter SSP2-4.5) and a high emissions126

scenario (SSP5-8.5) (Delworth et al., 2020). While the two emissions scenarios allow us127

to explore the effects of emissions uncertainty, SPEAR’s 30-member ensemble provides128

an estimate of internal climate variability.129

2 Data and Methods130

2.1 SPEAR Large Ensemble Global Climate Model131

To assess historical and future changes in snow drought, we analyzed snow water132

equivalent (SWE) across the Western United States from the 30-member Seamless System133

for Prediction and EArth system Research large ensemble (hereafter SPEAR) (Delworth134

et al., 2020). SPEAR is a coupled global climate model recently developed at the NOAA135

Geophysical Fluid Dynamics Laboratory (GFDL) that is designed for improved predic-136

tion on seasonal to decadal timescales. SPEAR comprises GFDL’s AM4 atmosphere, LM4137

land, MOM6 ocean, and SIS2 sea-ice models. These component models are the same as138

GFDL’s Global Climate Model version 4 (CM4, Held19), which is a contributor to the139

Coupled Model Intercomparison Project, phase 6 (CMIP6), but SPEAR’s configuration140

and physical parameterization choices are optimized for climate prediction and projec-141

tion from seasonal to centennial timescales. SPEAR has moderately high resolution in142

the atmosphere and land (50 km resolution) and a coarser ocean and sea ice horizontal143

resolution of about 1° which telescopes to 0.33° meridional spacing near the equator. For144

this study, we use SPEAR’s monthly SWE, temperature, and precipitation across the145

historical period, from 1921-2014, and projections from 2014-2100 under both SSP2-4.5146

and SSP5-8.5 emissions scenarios.147

2.2 Observational Data148

To evaluate SPEAR’s historical simulation of SWE, temperature, and precipita-149

tion we use an observations-based dataset (Livneh et al., 2013), available from 1915 to150

2011, hereafter the Livneh dataset. Livneh is statistically gridded from in situ observa-151

tions of precipitation and temperature to 1/16° resolution, and contains daily temper-152

ature, precipitation observations, plus SWE estimates which are generated using the VIC153

land model. To compare with the SPEAR ensemble members, we re-gridded Livneh to154

SPEAR’s 1/2° grid and re-sampled to SPEAR’s monthly timescale. Despite incorporat-155

ing observational data, SWE has perennially been hard to constrain (Wrzesien et al., 2019).156

Many recent papers have found SWE estimates to vary widely, upwards of a factor of157

3 in some cases (Wrzesien et al., 2019) leading us to expect significant absolute biases158

between SWE estimates (McCrary et al., 2017, 2022). To overcome this issue, we focus159

our analysis on proportional changes, comparing SWE values to their own historical dis-160

tributions within each dataset, and then comparing these relative changes across datasets.161

We chose 1921-2011 as our historical period as it is the overlapping period of the162

Livneh and historical SPEAR datasets. This window provides 90 complete winters (91163

years) which we use to validate SPEAR and to develop a baseline to which we compare164

the modeled future climatology. We chose to consider data at monthly resolution inter-165

vals for three reasons: (1) data availability, as SPEAR only recorded SWE at monthly166

intervals, (2) consistency with previous studies, as other papers have done similar anal-167
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ysis (Huning & AghaKouchak, 2020), and (3) monthly resolution is an appropriate timescale168

for monitoring snow drought.169

2.3 Comparison of a Climate Ensemble to Observations170

Several previous studies validate SPEAR against historical against historical con-171

ditions. Maher et al. (2022) assesses Pacific Decadal Oscillation (PDO) teleconnections172

to temperature and precipitation patterns across North America by validating observa-173

tional data against 5 large ensembles, including SPEAR. They find that SPEAR has both174

low bias in representing PDO, particularly along the US West Coast. In addition to the175

assessment in Delworth et al. (2020), which finds minimal temperature and a slight pre-176

cipitation biases, this study further validates SPEAR as accurately reproducing atmo-177

spheric conditions across WUS. As both studies have shown SPEAR to well-represent178

atmospheric conditions across the WUS, we focused our validation on WUS SWE. We179

first compare SPEAR ensemble members to the Livneh dataset over the historical pe-180

riod. As Livneh contains a single realization of the historical period, e.g. what actually181

happened, while the SPEAR ensemble runs capture many possible historical climates,182

we do not expect the Livneh measurement to align with the SPEAR ensemble mean be-183

cause changes to the ensemble mean represent the radiatively forced component of the184

climate with internal variability filtered out. The internal variability is an essential com-185

ponent of individual realizations, contributing significantly to inter-model spread in CMIP186

multi-model ensembles (Deser et al., 2020) and is essential for modeling extremes. How-187

ever, we do expect SPEAR to simulate a realization of the climate at least as extreme188

as the observed historical climate over most regions, although with only 30 members it’s189

still reasonable to expect some observations may fall outside of the SPEAR spread. Thus,190

if the change in snow drought frequency observed in Livneh falls within the SPEAR en-191

semble spread, we can assume SPEAR produces a realistic historical climate. We hope192

the Livneh statistics will fall near the majority of SPEAR ensemble members, as this will193

further strengthen the conclusion that SPEAR accurately represents WUS climate.194

2.4 Drought Classification195

Before we can assess changes in snow drought measurements, we must first define196

snow drought. We base our definition on the historical distribution of SWE by gridcell197

and month. We restrict our region of study to the “historically snowy” region, areas that198

historically have seasonal snowpack maxima that average above 20mm SWE, based on199

the SPEAR ensemble mean. This ensures only regions that typically have snow are el-200

igible for classification.201

Our methodology assigns standardized indices to each location by month and uses202

the US Drought Monitor’s drought classification method for hydrological drought to cat-203

egorize observations into descriptive bins; near normal, abnormally dry, and moderate,204

severe, extreme, and exceptional drought, see Figure S1 (Svoboda et al., 2002; Huning205

& AghaKouchak, 2020). We use a non-parametric empirical model to classify SWE, tem-206

perature, and precipitation values for each month. Without assuming the underlying dis-207

tributions, a non-parametric model allows us to efficiently capture the variability with-208

out imposing subjective constraints on the data. It also allows us to compare drought209

frequency and severity across different hydrological regions and datasets.210

We begin by assigning each winter month of the year (Oct-April) a score based on
the historical conditions at that location. Our time indices are by year (y) and month
(m), e.g. t1931,1 for January, 1931, and spatial indices are at intervals of 0.5 degrees of

latitude (i) and longitude (j). Thus s
t1931,1
40,250 corresponds to a SWE value at latitude-longitude

pair (40, 250) during January 1931. We now compute an empirical distribution over Sm
i,j =(

s
t1921,m
i,j , s

t1922,m
i,j , · · · st2011,mi,j

)
, representing the historical SWE values during month m

at location (i, j). We then assign a value in (0, 1) to each SWE measurement using the
empirical cumulative distribution function, F̂m

i,j , based on the proportion of the observed
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data in Sm
i,j that fall below it. In equation 1, I represents an element-wise indicator for

each element of Sm
i,j being below x and N represents the total number of measurements,

in this case 2011− 1921 = 90.

F̂m
i,j(x) =

no. of SWE values less than x

N
=

1

N

N∑
l=1

I
(
Sm

i,j < x
)

(1)

For each observed or simulated SWE value, s
ty,m

i,j , we can then compute the z-score by

plugging the SWE value into the corresponding F̂ and then into the inverse normal dis-
tribution, Φ. We refer to these scores as ZSWE, which are indexed by location, month,
and year. We can now classify snow droughts from the SWE value, s

ty,m

i,j , using

ZSWEy,m
i,j = Φ

(
F̂m
i,j

(
sy,mi,j

))
(2)

Each month is then assigned either a drought severity label, D0-D4, NN for “near-normal”211

conditions, or W0-W4 for increasingly wet months. See Table S1 for the full classifica-212

tion scheme and probability of occurrence. While we primarily use this framework to clas-213

sify snow droughts, we extend the methodology to temperature and precipitation clas-214

sification as needed. A similar empirically derived methodology is used by Huning and215

AghaKouchak (2020) to classify snow droughts across the Alps, Himalayas, and West-216

ern United States. More generally, this framework is inspired by the US Drought Mon-217

itor which uses the same D0-D4 classification. Their classification scheme, however, is218

not purely statistical, instead relying on experts for the final say on local drought clas-219

sification. As we cannot rely on experts, our model attempts to match the frequency of220

meteorological droughts in the US Drought Monitor with snow drought frequency. While221

our method may result in a mismatch of SWE values and impact in some locations, it222

provides a statistical way to quickly capture extremes without gathering detailed human223

and environmental data for each pixel.224

2.5 Computing Changes in Snow Drought225

We can now apply our drought classification scheme to evaluate how well SPEAR226

reconstructs historical changes. We define two 41-year windows containing 40 complete227

winters to assess change over, and after applying our drought classification scheme we228

count the number of D2+ SD occurrences across the early and late historical, given by229

a ZSWE of less than −1.3, e.g. I(Zt
R < −1.3) for region R at time t. The percent change230

for a given region, ∆R, is derived via231

∆R =

∑
t′ I(Zt′

R < −1.3)∑
t I(Zt

R < −1.3)
for t ∈ (1930, 1970), t′ ∈ (1971, 2011) (3)

For example, in the Upper Colorado region Livneh observes 27 months of D2+ SD232

in the early historical period and 28 in the late historical period, translating to an in-233

crease of 3.7%. We leverage the SPEAR ensemble spread below to determine whether234

the overall trend is significant.235

2.6 Snow Transition Threshold236

In addition to evaluating drought climatology, we are also motivated to determine237

how a changing snowpack will affect water resources. We want to determine when a shift-238

ing climate will begin to severely and persistently impact snow as a water resource. Long-239

term droughts are particularly damaging, as one or two years of low snow-pack can be240

buffered by groundwater, above-ground reservoirs, or stored in live biomass, but these241

buffers dwindle with extended exposure to drought conditions. Thus, we are particularly242
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interested in determining when no-snowpack is expected to become systemic (Siirila-Woodburn243

et al., 2021).244

Understanding the fraction of snow that remains in a typical year is important for
water management (Harpold et al., 2017). To assess this threat, we focus on the frac-
tion of April SWE that remains in historically snowy regions across each of the 5 HUC2
watersheds. We classify an April (m = 4) grid cell st,4i,j as no-snow (or snow free) for
that year if there is at most 10% of the historical snowfall average remaining at the lo-
cation (Siirila-Woodburn et al., 2021). We then calculate the regional no-snow area pro-
portion as the fraction of the historically snowy region which experiences those condi-
tions. We let N Y

R to denote this no-snow area proportion, where R represents the region,

and Y the year. As before,
¯

StY ,4
i,j is the average historical SWE value for the grid cell

and stY ,4
i,j the SWE value for the specific year. Using 10% as our snow free threshold, T =

0.1, then N Y
R can be written as:

N Y
R =

∑
(i,j)∈R I

(
stY ,4
i,j < T · ¯S4

i,j

)
|(i, j) ∈ R|

. (4)

Thus we have a fraction of the historically snowy region that is snow free in a given year
in April. To assess when no-snow conditions become endemic, we apply a 10 year moving-
window mean and then define the no-snow transition time as the year when the moving-
window mean last crosses the area threshold, A, before 2100. Applying this procedure
to all ensemble members, we compute a distribution for when these conditions are likely
to become endemic. Formally, the no-snow transition time, T , is given by:

T :=
[
min t : Ñ t′

R ≥ A ∀ t < t′ ≤ 2100
]
. (5)

Where Ñ t′

R gives the moving-window mean fraction of region R that experiences no-snow245

conditions at time t′. By requiring the moving-window average to be above A for all sub-246

sequent years (until 2100), T is uniquely determined. For a graphical explanation of this247

method, please refer to Figure S4.248

3 Results249

3.1 SPEAR Model Evaluation250

3.1.1 SPEAR Ensemble Mean Bias251

We begin our evaluation with a brief comparison of Livneh and SPEAR winter mean252

SWE. We do this by averaging over the winter season, Oct-April, for the period of dataset253

overlap, 1921-2011. We find that SPEAR has a negative snow bias across much of the254

Mountain West, see Figure 1. In particular, regions characterized by high elevation of-255

ten have SWE values over 100% higher in the Livneh dataset than SPEAR. However,256

this is not particularly surprising as resampling the 1/16° Livneh grid to match SPEAR’s257

1/2° grid introduces bias as higher elevations have disproportionately more snow as com-258

pared with elevation (McCrary et al., 2022). However, despite these large absolute bi-259

ases, we can still use SPEAR to quantify future snow droughts if it reasonably reproduces260

trends and relative variability in SWE, temperature, and precipitation. To make these261

comparisons we leverage the distribution of the SPEAR large ensemble, allowing us to262

create a distribution of potential historical outcomes, to compare against the Livneh dataset.263

We also compare historical temperature and precipitation changes in Figure S1. Precip-264

itation biases are consistently high across much of the Western US as seen in Figure 1265

– these findings are consistent with Delworth et al. (2020).266

3.1.2 Evaluating Snow Drought Changes across the Historical Period267

When examining historical changes, we find that SPEAR historical snow drought268

and temperature trends are already significant, based on a 95% confidence interval for269
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Figure 1. SPEAR winter (Oct-Apr) (a) snowpack (%) and (b) map of the 5 study HUC2

regions of interest.

Figure 2. Summary table of Livneh and SPEAR average D2+ SD frequency changes for each

of the 5 Western HUC2 regions. Changes are measured between the early (1930-1970) and late

(1971-2011) historical periods. As SPEAR is a large ensemble we include a 95% confidence inter-

val which assumes normally distributed changes, and a range of changes across the ensemble.

the ensemble mean assuming an underlying normal distribution in changes. Changes in270

SWE across all 5 studied HUC2 regions, the Upper Colorado, Lower Colorado, Great271

Basin, Pacific Northwest, and California regions (abbreviated UC, LC, GB, PNW, and272

CA) show with ensemble means ranging from 26% (LC) to 53% (UC) increases in D2+273

SD occurrence, as in Table 2. The Livneh dataset always falls within the ensemble spread274

(Table 2), although it is not always in the ensemble mean 95% CI. We present the dis-275

tribution of D2+ SDs across the historical period (1980-2011) for SPEAR ensemble mem-276

bers, the SPEAR mean, and confidence interval, along with the Livneh observation in277

Figure 3. These results were consistent with findings in Huning and AghaKouchak (2020),278

who use 1980-2018 as their historical period — in fact, the 95% confidence interval for279

the SPEAR ensemble mean across 4 of the 5 regions contains the 28% benchmark for280

drought intensity increases found in Huning and AghaKouchak (2020), with only the UC281

interval exceeding the benchmark with a 30% lower bound on historical D2+ SD increases.282

While we were unable to use an identical historical period due to data constraints, the283

agreement helps to further validate the SPEAR ensemble. See supplemental Text S1 and284

Figure S3 for an analysis of changes in precipitation and temperature across the histor-285

ical period.286
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Figure 3. Comparison of SPEAR estimated D2+ SD increases across the historical to Livneh

observed increases. The SPEAR distribution is given by the histogram in blue, with the red

vertical line representing the observed change in the Livneh dataset. The solid and dashed gray

lines represent the mean and 95% confidence interval for each region’s ensemble mean, while the

dotted line represents the zero trend line.
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3.2 Analyzing Snowpack into the 21st Century: Accelerating Loss287

We next shift our attention to projected changes in 21st century D2+ SD, focus-288

ing first on changes in droughts classified with our ZSWE metric. We construct our em-289

pirical CDF F̂m
i,j distributions from the historical period (1921-2011) and calculate cor-290

responding ZSWE scores for each winter month across the historically snowy west 2014-291

2100 for all 30 ensemble members. Projected changes in snowpack are dramatic, with292

rapid increases in D2+ SD occurring at mid-century (Figure 4). Under SSP5-8.5, we find293

that towards the end of the century, all regions are projected to experience severe, ex-294

treme, or exceptional drought during most months. Under SSP2-4.5, snow drought in-295

creases are less severe, with conditions by the end of the century resembling conditions296

under SSP5-8.5 by mid-century. As expected, the higher forcing scenario corresponds297

with accelerated increases in snow drought frequency. Snow drought frequencies for all298

18 study decades are shown in Figure S4.299

Examining the distribution of D2+ SDs spatially in Figure 4, a pattern of regional300

“hot-spots” emerge. D2+ SD frequency is consistently higher in certain regions begin-301

ning in 2030. For example the Washington Cascades and Colorado Rockies are predicted302

to experience more frequent snow drought occurrences across all decades than regions303

in south-central Idaho and the California Sierra Nevada. We expected to see more dra-304

matic D2+ SD increases in the Southern Basins, California and the Lower Colorado, as305

they are most susceptible to warming, as even low amounts of warming at southern lat-306

itudes results in strong loss signals (Shrestha et al., 2021). We hypothesize that we are307

looking over a narrow enough range of latitudes that the latitude signal is overshadowed308

by regional variation, perhaps coming from elevation variability. Shrestha et al. (2021)309

looked at basins ranging from the Yukon to Columbia river basins that have average win-310

ter temperatures of -8°C to +4°C, finding that below -5°C to -6°C warming temperatures311

didn’t reduce snowpack. Our HUC2 regions had mean winter temperatures in histori-312

cally snowy regions ranging from -5.1°C (UC) to 0.3°C (California), and so we expect313

that any warming will produce decreases in snowpack, and corresponding increases in314

D2+ SD occurrence.315

While Figure 4 demonstrates the expected impacts of increasing greenhouse gases316

over the next century, as captured by the ensemble mean, it does not indicate how in-317

ternal climate variability may exacerbate or alleviate the radiatively forced changes. As318

regions must be prepared for conditions less favorable than an ensemble mean, the SPEAR319

large ensemble allows us to quantify the uncertainty of these ensemble mean changes that320

is attributable to internal variability by looking across the ensemble spread. By aggre-321

gating snow drought counts to the entire WUS, and then looking at changes for individ-322

ual ensemble members, we can visualize changes in ensemble snow drought through time323

(Figure 5).324

Figure 5 shows the percentage of months by decade which experience D2+ SD in325

each of the SPEAR ensemble members. We find that members experience 5-12% D2+326

SD frequency in the historical period, averaging 6.5% between 1920 and 2000. Under SSP5-327

8.5 this likelihood increases to over 35% snow drought frequency by 2050. Under SSP2-328

4.5, the same conditions are reached in 2070. We note the SSP5-8.5 curve is initially flat329

until 2000, where snow drought occurrence starts increasing and continues to grow unchecked;330

under SSP2-4.5 the curve has a second inflection point at 2070, where the increase in snow331

droughts flattens significantly. Interestingly, we note that Livneh does not observe the332

same uptick in drought frequency in 2000 where it diverges from SPEAR. However, when333

examining the observed changes in Figure 3, we see that there is a significant decrease334

in D2+ SD frequency in the Pacific Northwest. The region saw a 54% decrease in snow335

drought. This decrease, while in the SPEAR ensemble range, is far from the SPEAR en-336

semble mean and perhaps explains the deviation.337
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Figure 4. SPEAR snow drought changes highlighted from 1960-2100 under low (SSP2-4.5)

and high (SSP5-8.5) emissions scenarios. The plots are masked to historically snowy regions

which are colored by the percentage of winter months that the grid-cell experiences snow drought

grouped every 2 decades. Historically snowy regions are characterized by having an average peak

SWE of at least 20mm.
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Figure 5. Decadal average of the number of SD months per grid cell. The green trend curves

represent the ensemble mean averages for the historical and RCP 4.5 scenarios, while the orange

curves depict the RCP 8.5 scenario. Ensemble mean and error is shaded darker.

3.3 Temperature and Precipitation Controls on SWE338

As changes in SWE are primarily driven by changes in temperature and precipi-339

tation climatology (McCrary et al., 2017; Harpold et al., 2017), we next examine changes340

in SWE in the phase space spanned by temperature and precipitation. By aggregating341

over the entire historically snowy Western United States, we can determine how tem-342

perature and precipitation anomalies are driving the dramatic increase of droughts. In343

Figure 6, each dot represents the average temperature and precipitation anomaly by decade344

and is colored according to the average ZSWE score. By definition, the average all-month345

historical (1921-2011) temperature and precipitation mean is (0, 0). However, by break-346

ing the century down by decade we can see variation within the 20th century.347

As expected, all-month decadal averages in the historical period cluster around zero348

temperature and precipitation deviation, and move as the underlying temperature and349

precipitation climatology shifts. In general we see small changes in anomalies between350

decades before 2000 which are consistent with our understanding of changing D2+ SD351

frequency. Beginning with the 2000s, the decadal averages for the all-month condition352

rapidly shift towards warmer and wetter conditions. For example, by 2050 under SSP5-353

8.5, the average temperature and precipitation are 1.50 and 0.25 standard deviations higher354

than the 20th century average, respectively. This corresponds to a dramatic warming and355

slight wetting across the WUS, and indicates that we expect the average month in 2050356

to be warmer than 93% of months in the historical period for a given location. For SSP2-357

4.5, the values are 1.18 and 0.20, respectively, reflecting a still moderate increase in tem-358

perature and precipitation by mid-century, with the average month in 2050 being warmer359

than 88% of historical months.360

To investigate how droughts specifically are changing, we also tracked just the months361

which experienced D2+ SD to see how the average drought month has changed (outlined362

in grey in Figure 6). We find that historical D2+ SD averages are both dry and warm363
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Figure 6. Temporal evolution of average temperature and precipitation anomalies with re-

spect to the historical conditions (1921-2011). Each dot represents the average temperature and

precipitation condition for historically snowy locations during winter (Oct-April) for a given

decade either for all months and locations (outlined in green) or only for months classified as

D2+ (outlined in gray). Each point is shaded by its average ZSWE score; thus because D2+

SD months are restricted to have a ZSWE of less than −1.3, these points average snow drought

conditions are less than −1.3. Both all-month and D2+ SD-month points are surrounded by a

contour which captures 95% of ensemble members. Panel (a) depicts these changes under SSP2-

4.5 while (b) depicts changes under SSP5-8.5.

with an average temperature and precipitation anomaly of 0.6 to 0.8 and -0.6 to -0.8,364

respectively, indicating historical snow droughts are primarily driven by a near equal com-365

bination of both warm and dry conditions. This corresponds to a drought month on-average366

being both warmer and drier than 75% of months.367

However, by 2050 the average drought has become both warmer and wetter ; un-368

der SSP5-8.5 the temperature deviation increases to 1.84 and the precipitation devia-369

tion increases to -0.015, meaning that it no longer takes any deviation from normal his-370

torical precipitation to produce a drought. Furthermore, we conclude future D2+ snow371

drought conditions are driven by the increasingly high temperature average, which is warmer372

than 97% of historical conditions. By 2090, the average drought month has a temper-373

ature deviation of 2.18 and precipitation deviation of 0.27, very close to the all-month374

anomalies of 2.10 and 0.36 for temperature and precipitation, respectively; both the av-375

erage monthly temperature for both D2+ and all-month averages are in the 98th per-376

centile of historical conditions, indicating not only that future winter conditions will on377

average be extremely warm, but that the difference between average conditions for all378

months and drought months alone has narrowed significantly. Examining the ZSWE scores379

for 2090 under SSP5-8.5 confirms that the convergence is also reflected in SWE changes,380

with the average all-month ZSWE being -1.79 and the average D2+ month having a ZSWE381

of -2.10. Thus, the all-month average is expected to be an extreme drought, while the382

average drought is expected to be exceptional. Under SSP2-4.5, conditions do not be-383

come quite as extreme, with average all-month conditions by 2090 reaching 1.48 for tem-384

perature, 0.27 for precipitation, and -1.10 ZSWE. We note that although the gap to the385

D2+ condition (1.75, 0.064, and -1.91 for T, P, and ZSWE), narrows it is far less extreme386

than under SSP5-8.5; the average month is only given a D1 snow drought classification.387

The convergence of the all-month and D2+ temperature and precipitation anomalies,388
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particularly under SSP5-8.5 emphasize that D2+ SDs will require increasingly smaller389

deviations from normal conditions to produce. This underscores that snow droughts will390

become the dominant regime in the WUS by the end of the 21st century.391

3.4 Timeline for Snow Free Conditions392

In addition to changes in D2+ SD frequency, we also examine how total SWE avail-393

ability is expected to change, by assessing the timing of Western regions transition to394

a no-snow regime. A no-snow regime, characterized by a 10-year moving average of April395

snowpack consistently below 10% of the historical April average, is potentially catastrophic396

as it indicates severely limited summer water supply from snowpack. To understand when397

a no-snow regime is likely to affect an HUC2 region, we examine the distribution of tran-398

sition times to no-snow across SPEAR’s ensemble members. By varying the area thresh-399

old, A, we can assess how quickly conditions are expected to deteriorate. Figure 7 shows400

the distribution of the transition to no snow regimes for 3 different area thresholds, A:401

50%, 75%, and 90%, for the historically snowy HUC2 regions. Note that by construc-402

tion, an individual ensemble member’s transition year always occurs later for higher A.403

However the ensemble distributions can overlap, which indicates large variability in the404

severity of conditions, especially later this century.405

For A = 0.5, we find that the historically snowy WUS, or “West-Wide”, transi-406

tion time, averaged across all regions is 2071 for SSP2-4.5 and 2048 for SSP5-8.5. Across407

regions however, transition times varied from as early as 2025 (CA) to 2088 (UC) for SSP2-408

4.5 and 2018 (CA) to 2056 (UC) for SSP5-8.5. The snow-free transition distribution cen-409

ter occurs later for all regions under the SSP2-4.5 scenario when compared with SSP5-410

8.5. The scenario difference is less pronounced in regions which experience a no-snow tran-411

sition earlier, such as California. We conclude that while a lower emission scenario im-412

proves the probability that the transition to a no-snow regime occurs later, internal cli-413

mate variability could still result in periods of no snow much sooner than the ensemble414

mean predicts.415

Another notable feature of Figure 7 is the large range of transition times within416

each region of the 30-ensemble member transition times. We find that in some ensem-417

ble members, the earliest transition occurs over 15 years earlier than the median tran-418

sition for many regions. For example, in the Lower Colorado region, the first ensemble419

member transitions to no-snow in 2069 while the mean transition time of the ensemble420

members isn’t until 2086. Thus, while the LC is not likely to see these extreme condi-421

tions until the 2080s their hydrological infrastructure, snow tourism economies, and fire422

response must be prepared significantly earlier to face these conditions. The shape of the423

transition time distribution under SSP2-4.5 is also more spread out than the high emis-424

sion scenario indicating a larger uncertainty in the onset of no-snow conditions. This is425

consistent with our expectation that more rapid warming under SSP5-8.5 will acceler-426

ate the timeline associated with a transition to no-snow, the compressed timeline is sim-427

ply a byproduct of this effect. In other words, temperature and precipitation changes428

are happening more slowly in SSP2-4.5 which leads to internal climate variability being429

a more important factor in determining no-snow transition times, while in SSP5-8.5, the430

accelerated radiative forcing is the dominant effect. As a result, many regions under SSP2-431

4.5 experience transition times that occur before ensemble members under SSP5-8.5. For432

example, in the Pacific Northwest a quarter of the SSP2-4.5 realizations transitioned be-433

fore the median ensemble member under SSP5-8.5. This suggests that emission reduc-434

tions, while likely to improve the odds that a no-snow transition occurs later in the cen-435

tury, do not a guarantee a latter arrival of these conditions. This is particularly true for436

regions where the transition is projected to occur earlier in the century, likely because437

scenario forcing is much more similar.438

To assess the probability that a region becomes snow free over the next century,439

we examine the fraction of ensemble members that transition to no-snow before 2100.440

We model the likelihood of the transition by the maximum likelihood estimator (MLE),441
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Figure 7. Distribution of SPEAR-simulated transition times to no snow regimes, or T , by

Western HUC2 region, split between SSP5-8.5 and SSP2-4.5 scenarios. The 3 subplots represent

the different thresholds A. Meeting a higher threshold corresponds with an increased proportion

of the region experiencing perennial no-snow conditions, and implies more severe conditions. The

vertical lines in the distributions represent the quantiles of the ensemble members that transition.

We also include a transition time for the entire historically snowy WUS, labeling it “West-Wide.

or fraction of ensemble members that hit the transition threshold by 2100, and display442

these values in Table 8. By further splitting across the low and high emission scenarios,443

we can model how the risk also changes as a function of the radiative forcing scenario.444

In Table 8b, we see that under SSP5-8.5, A = 0.75 is guaranteed by 2100 across all re-445

gions. The highest threshold, A = 0.9 is guaranteed only for California, while uncer-446

tainty remains for the other 4 HUC2s. Conditions by 2100 are much less severe under447

SSP2-4.5, with only A = 0.5 likely or certain for all regions, while for A = 0.75, only448

California is very likely to transition to a low snow regime; the other regions have low449

probability of doing so. For A = 0.9 it is unlikely that any region will have transitioned450

by 2100 under SSP2-4.5.451

Furthermore, when we compare the order of how likely regions are to transition to452

no-snow conditions with the regions average historical temperature, we find the coldest453

regions are in general least likely to transition while the warmest are most likely. For ex-454

ample, under SSP5-8.5 with A = 90%, the region ordering by temperature and tran-455

sition probability is the same: UC (-5.1°C, 30%), PNW (-3.9°C, 53%), GB (-2.4°C, 70%),456

LC (-0.7°C, 83%), and CA (0.3°C, 100%). This finding emphasizes the role mean win-457

ter temperature plays in dictating a region’s no-snow transition probability. Like Shrestha458

et al. (2021) we find that warming any region with a winter average of > −5°C, neg-459

atively impacts snowpack.460

Table 8 indicates that under either SSP2-4.5 or SSP5-8.5 we expect at least half461

of the historically snowy WUS to have less than 10% of its historical April snowpack by462

2100. Both columns where A = 50% show greater than 80% probability for all regions,463

with the threshold guaranteed under SSP5-8.5. We also find that under SSP5-8.5, 4 of464

the 5 Western watersheds are more likely than not to cross the A = 90% no-snow thresh-465

old by 2100. Upper Colorado is the exception with only a 30% chance, likely driven by466

it’s colder average winter temperatures. While these numbers are shocking, it’s impor-467

tant to consider how snow-covered area and total snow volume differ. As snowpack de-468

clines are dominated by losses at lower elevations that are closer to the freezing point,469

we expect that the extreme loss of snow-covered area predicted by SPEAR will overes-470

timate the amount of total winter water storage lost, since the higher elevations typi-471
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Figure 8. Probability of a snow free transition occurring before 2100 at the 3 thresholds A
based on the fraction of ensemble members who transition to a no-snow regime by 2100. We

show the probabilities by area threshold, 50%, 75%, and 90%, across SSP2-4.5 and SSP5-8.5 for

the historically snowy portions of each of the 5 Western HUC2 regions.

cally store the most snowpack (Mote et al., 2005; Minder, 2009). Therefore we expect472

the area-based no-snow transition to over-predict the hydrological impact of warming.473

4 Remarks474

According to SPEAR, widespread increases in D2+ SDs have already been observed475

in the historical period, which estimates the WUS D2+ SD frequency has increased by476

43%, with an average 95% confidence interval of 22 to 65%. These findings are slightly477

higher, although still consistent with, Huning and AghaKouchak (2020) whose slightly478

different time period found a 28% increase in D2+ SD frequency for the WUS over 1980-479

2018. SPEAR predicts even more dramatic changes heading into the 21st century, clas-480

sifying over 35% of winter months as snow droughts under RCP2-4.5 and 60% under RCP5-481

8.5 by 2100, compared with a normalized 9.6% across the historical period. These changes482

were found to be primarily driven by increasing temperatures, which on average exceeded483

the 93rd and 97th percentile (2 standard deviations) of historical temperature records by484

2100 under RCP2-4.5 and RCP4-8.5, respectively. We also found that across all regions,485

the transition to a no-snow regime, where over 90% of the historically snowy region had486

on average less than 10% of the April historical maximum, was more likely than not in487

4 out of the 5 HUC2s studied under RCP5-8.5, the UC region being the exception. Un-488

der RCP2-4.5, only the 50% threshold was very likely for all regions, emphasizing the489

role that emissions this century will play in determining no-snow transition.490
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Similar to Shrestha et al. (2021), who found a strong correlation between decreas-491

ing latitude and decreased snowpack. We find the probability of a no-snow transition is492

much more likely for regions which have higher average winter temperatures. In partic-493

ular, the Lower Colorado and California Regions, which are the most southern, had the494

highest probabilities of reaching no-snow conditions across both emissions scenarios and495

all area threshold values, and similarly had historical winter temperatures averaging near496

0°C. The Pacific Northwest and Upper Colorado, the coldest regions on average, typi-497

cally had the smallest transition probabilities.498

While using a GCM allows us to examine multiple realizations of the climate to499

derive these probabilities, it is inherently limited by the model assumption constraints.500

In particular, the large resolution of a 1/2° global climate model is unable to resolve com-501

plex mountain topography and can result in significant warm biases which predicts less502

snow at elevation, as shown by Matiu and Hanzer (2022). We expect this may make SPEAR503

snowpack estimates particularly sensitive to warming, and therefore likely to overesti-504

mate increases in snow drought. Another recent paper from Hoylman et al. (2022) as-505

serts that using timescales longer than 30 years, as has been done in the vast majority506

of previous literature (Svoboda et al., 2002), as the baseline climatology can result in over-507

estimating the drought threat. Further work should be done to investigate the effect of508

the reference window on drought severity estimation.509

Here, we’ve assessed changes in snow drought frequency, focusing on how the un-510

derlying climatology is expected to change, alongside modeling the distribution of ex-511

pected no-snow transition times. This study has implications for Western hydrology and512

snow tourism which is expected to see losses of 50% of ski season length by 2050 and 80%513

by 2090 (Wobus et al., 2017). One promising avenue for future research is to examine514

snow drought frequency changes over smaller regions, such as HUC4 regions to tease out515

which sub-regions are most vulnerable. This would also allow us to further examine lat-516

itude and elevation dependence. Also, estimating total SWE losses and melt timing across517

each region would allow us to better estimate the impacts of snow droughts on the West’s518

hydrological system. The impacts of future snow droughts will be felt across the entire519

country, both directly from the hydrological or tourism resources that consistent snow-520

pack provides, and indirectly through loss of agricultural output from summer water short-521

ages or drifting wildfire smoke and warrant further investigations. Understanding the522

probable severity and timing of when these conditions are supposed to become most dam-523

aging, alongside both emissions uncertainty and uncertainty derived from internal cli-524

mate variability, will allow policymakers and infrastructure planners to best prepare the525

West for a future with less snow.526
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