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Motivation: The California Central Valley (CCV) produces a quarter of US food on less than 1% of US 
farmland1. As the CCV has little summer rainfall (June, July, and August – JJA), it relies on meltwaters 
from Sierra Nevada Mountain Range (SNMR) snowpack alongside groundwater aquifers to maintain its 
prolific agricultural output. Recent CCV droughts have had billion dollar impacts on agricultural production 
and are expected to increase in frequency by 100% by 21002. The lack of JJA rainfall in CCV implies that 
most of the water for summer irrigation is already stored the previous winter and spring in mountain 
snowpack and aquifers. The US Drought Monitor (USDM) bases its long-range drought forecasts on 
snowpack and weather patterns, assessing severity using a drought classification scheme, measured from 
D0 (abnormally dry) to D4 (exceptional drought)3. While a drought classification score lists potential 
impacts, it falls short of predicting whether water resources will be available locally, leading those reliant 
on water for irrigation or domestic use to guess if their wells will run dry. In CCV, an extensive record of 
the timing of well failures for CCV’s ~100,000 wells has already been validated as a powerful metric for 
drought evaluation4,6. The dataset is available from the California Department of Water Resources. 
  Mountain snowpack, often measured as snow-water-equivalent (SWE), is measured at SNOTEL 
and Snow Course sites to provide daily snowpack measurements across the SNMR has been shown to be 
highly predictive of summer water supply4,5. As SNMR snowpack melts, the region of the CCV which the 
water ends up in is determined by the hydrologic unit (HUC) in which it fell as snow.  

On the other hand, CCV groundwater monitoring is typically done by measuring the levels of 
specific aquifers using hydraulic head, which is prohibitively expensive and results in measurements that 
are spatially and temporally sparse, and thus unable to provide the agriculture industry with detailed enough 
measurements to estimate the extent of water resources available to them for the upcoming summer growing 
season6. Other methods for estimating groundwater changes include satellite mapping using tools that map 
surface deformation such as InSAR which fall short of measuring changes in underground structure7. A 
novel approach to groundwater volume prediction uses changes in seismic velocity (dv/v)8,9. The quantity 
dv/v can be calculated using cross correlation of the ambient seismic field and has been found to respond 
linearly to changes in groundwater9. 
Proposal: I propose a novel approach for well failure 
prediction in the CCV by combining late-spring 
estimates of groundwater aquifer levels using seismic 
arrays with observational estimates of SWE across the 
SNMR. This project, called SWEDV, will generate a 
comprehensive map of seismic velocity across CCV 
alongside estimates of spring SWE storage. I 
hypothesize that (1) seismic velocity changes can be 
used to predict well failure rate (WFR) in CCV, (2) lower 
SWE values across SNMR are positively correlated with 
WFR and that (3) SWE combined with seismic velocity 
changes in a machine learning (ML) model predict 
regional WFR better than the USDM 3-month forecast. 
I will focus on the time window 2000-present. 
Aim 1: Calculate empirical map of seismic velocity changes and validate against well failure rates. I 
will use a portion of the 3000+ IRIS network stations located in and around CCV to compute spring (April) 
and summer (July) ambient noise cross-correlations (ANCCs) which can be used to estimate changes in 
seismic velocity between station pairs relative to a multi-year average8,9. To translate pairwise dv/v to a 
spatial grid of velocity structure changes we will distribute the dv/v value to grid cells within 2 or 3 
kilometers of the direct path between station receivers and then report the total grid cell change as the 
average of all dv/v station pairs which overlap the cell, following the reconstruction technique of [8] and 
[10]. As I expect groundwater to respond linearly to dv/v changes, I will begin with linear and polynomial 
regression, using CCV HUC8 regions as fixed effects to capture regional differences, to assess the 



predictive power of dv/v changes on WFR. With accurate well failure predictions at high resolution ahead 
of the summer season, farms and households can adjust crop species and water usage. 
Aim 2: Calculate SNMR SWE by HUC8 and assess correlation with well failure rates.  I will estimate 
annual April 1st SWE at HUC8 or finer resolution using observations-based data from the over 250 
SNOTEL and Snow Course (SC) measurement sites across the portion of the SNMR that feeds CCV4. To 
aggregate observations to estimates of HUC8 snowpack, I will either use a sample mean or employ a small-
area estimation model to incorporate geographic information like elevation (Fig. 1a). For Aim 2, the 
response will be average July 1st average well failure rate by CCV HUC8. Using Multivariate Multiple 
Regression (MVMR) we can assess how predictive SNOTEL/SC measurements are of WFRs. 
Aim 3: Combine seismic velocity changes with HUC8 SWE changes to predict well failure rates and 
compare to US Drought Monitor Predictions. Once I’ve validated that spring seismic velocity and SWE 
models correlate with summer WFRs, I will use the two datasets from Aim 1 and 2 to build a predictive 
model (SWEDV) to improve WFR estimation. Model inputs will be averaged dv/v change by CCV HUC8 
region and estimated SWE by SNMR HUC8 region as defined in Aim 1 and 2, respectively. Our response 
variables will average July 1st summer well failure rate by HUC8, 3 months after our calculated prediction 
variables. Machine learning (ML) is particularly well suited to this task because we expect complex, and 
potentially highly non-linear interactions between the predictors and WFRs. I anticipate using expressive 
models for SWEDV, such as random forest regressors or neural networks, and expect to spend time tuning 
models to balance expressivity and parsimony.  
 While I expect to use SWEDV to predict WFR on a scale finer than HUC8 – extensions include 
estimating failure rates at the town or even well-level, validating its predictive power against the current 
standard, the USDM’s 3-month prediction, will confirm the model’s accuracy. To do this I will build a 
MVMR model to predict WFRs by HUC8 region from the USDM April prediction of July drought 
conditions (a 3-month prediction) by assigning each CCV HUC8 region a drought classification score by 
the classification which has the largest area in the region, no drought or D0-D4. By using a train-test split 
for our dataset, we can compare SWEDV to the current tool using metrics like classification accuracy and 
MSE.  
Intellectual Merit: This project will improve WFR estimation for CCV by using machine learning across 
a terabyte-scale seismic dataset and observational SWE measurements. To my knowledge combining 
groundwater estimates from seismic data alongside climatological data to estimate drought intensity has 
never been done before. Furthermore, the scale at which we hope to use seismic data to estimate 
groundwater reserves is also novel and will produce a spatiotemporal map of dv/v estimates to infer 
groundwater at higher resolution than conventional hydraulic head methods. The project will exemplify 
how combining interdisciplinary datasets can improve prediction capabilities. The NSF Graduate Research 
Fellowship will provide the resources necessary to run and store the computationally intensive workflows. 
Broader Impacts: As a proponent of open-science, I plan to make my workflow, seismic velocity datasets, 
and predictions for upcoming well failure rates publicly available, through online platforms (e.g., GitHub, 
Zenodo, AWS storage), conferences (e.g., AGU, AMS), and to policymakers and farmers who can use them 
to manage water resources, select drought resistant crops to plant in dry years, and support seasonal 
workforces. Focusing on groundwater and snowpack will improve prediction of summer drought severity 
in CCV as when both resources run dry, crop failures result in the loss of steady agricultural jobs, a degraded 
landscape, and increased food prices. While the impacts of drought are felt by all, disadvantaged 
communities, some of whom hold jobs in CCV agriculture, and who are most sensitive to food price 
increases, are likely to suffer most. Thus, while this research will help advance computational seismology 
and drought research, I hope to also use my funding as an NSF Fellow to ensure these predictions are shared 
with and accessible to the people who can apply it to address the water needs of the CCV’s most vulnerable. 
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